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Abstract—Confidential computing, powered by trusted execu-
tion environments (TEEs) like Intel SGX/TDX and AMD SEV-
SNP, is now widely available from major cloud providers.
At the core of these technologies is hardware-level memory
encryption to protect against privileged attackers and physical
threats such as bus snooping and cold boot attacks. Recent ex-
tensions add access-control checks to defend against software-
based ciphertext manipulation and aliasing attacks. In this
work, we challenge the protection modern memory encryption
technologies offer against physical adversaries by building a
low-cost (<$50) DDR4 interposer that dynamically tampers
with address lines to bypass aliasing checks in current TEEs.

We demonstrate how the runtime nature of our interposer
bypasses boot-time firmware mitigations introduced by AMD
and Intel in response to software-based memory aliasing at-
tacks. Using our interposer, we present the first attack on Scal-
able SGX’s single-key domain, achieving arbitrary plaintext
read/write access and extracting SGX’s platform provisioning
key, thereby dismantling trust in remote attestation. We further
re-enable a full attestation breach on up-to-date AMD SEV-
SNP platforms, bypassing recent firmware defenses against
static aliases. Our results challenge core assumptions about
encrypted memory security and highlight critical shortcomings
in the performance-security trade-offs of current confidential
computing systems. Costing orders of magnitude less than
commercial DRAM interposers, our device underscores the
need for stronger protections against low-cost physical attacks
in scalable TEE designs.

1. Introduction

The increasing reliance on cloud infrastructure has in-
tensified concerns over data confidentiality, especially in the
face of insider threats, privileged software vulnerabilities,
and coercive legal regimes. These risks, highlighted by the
Snowden revelations and reinforced by evolving privacy reg-

ulations, call for stronger security guarantees. Confidential
computing addresses this need by enabling the processing
of sensitive data within hardware-isolated Trusted Execution
Environments (TEEs) where both code and data are pro-
tected from the surrounding system, including the privileged
operating system and hypervisor. With the advent of com-
mercial technologies like Intel’s Software Guard Extensions
(SGX) and Trust Domain Extensions (TDX), AMD’s Secure
Encrypted Virtualization (SEV), and Arm’s Confidential
Compute Architecture (CCA), confidential computing is
now widely supported by major cloud providers.

A key building block of confidential computing is
efficient and scalable hardware-level memory encryption.
Unlike alternative, less practical data-in-use technologies
like homomorphic encryption, confidential computing al-
lows computations directly on plaintext within the CPU
package. Strict hardware-level access control mechanisms
ensure that plaintext data in CPU caches or registers cannot
be accessed from outside the protected enclave environ-
ment. Meanwhile, a dedicated memory encryption engine,
integrated into the CPU’s memory controller, transparently
encrypts and decrypts all data moving between the CPU and
untrusted Dynamic Random-Access Memory (DRAM). This
mechanism provides critical protection against untrusted
cloud providers who may attempt physical attacks, such as
cold-boot attacks [1] or memory bus snooping [2].

Given its central role in confidential computing, security
analysis of encrypted memory has received considerable
attention in recent years. Most research has centered on
software-level threats, uncovering vulnerabilities such as
ciphertext side channels [3, 4] and memory aliasing at-
tacks [5]. In response, hardware vendors have deployed
firmware-level mitigations, such as Intel’s MCHECK and
Alias Checking Trusted Module (ACTM) [6] and AMD’s
ALIAS_CHECK [7] and CiphertextHiding [8] features
to eliminate the software attack surface.

In contrast, the resilience of modern memory encryp-
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tion schemes against physical adversaries—those with direct
hardware access—remains less well understood. Early de-
signs, such as Intel’s Client SGX [9], offered strong integrity
and freshness guarantees against physical adversaries, but
were limited to small protected memory regions (typically
128–256 MB). To enable lift-and-shift deployment of un-
modified applications, newer architectures like Intel Scalable
SGX and TDX, AMD SEV, and Arm CCA all have scaled
encryption to cover the full DRAM. However, this scalabil-
ity comes at the cost of relaxed cryptographic integrity pro-
tections, increasing potential exposure to physical attacks.
These risks have traditionally been considered impractical,
as successful exploitation was assumed to require high-
cost equipment such as active interposers priced upwards of
$100,000. Reflecting this common belief, AMD describes
physical attacks as “very complex and requir[ing] a signif-
icant level of local access and resources” [10], and Intel
characterizes the shift in Scalable SGX as a “performance
vs. security trade-off” while asserting that “critical benefits
are still maintained” [6].

In this paper, we challenge these assumptions, consider-
ing the following fundamental research questions:

What level of protection do today’s memory encryption
technologies offer against physical adversaries? What are
the technical and economic requirements for mounting a
successful attack? What are the practical implications of
breaking these protections for different TEEs?

To address these questions, we develop a minimal, low-
cost memory interposer—built from off-the-shelf compo-
nents for under $50—that sits between the CPU and DDR4
memory and dynamically reroutes address lines via a pro-
grammable switch. Using this setup, we demonstrate for the
first time the existence of dynamic memory aliases, which
can be introduced at runtime. This crucial property allows
us to completely bypass Intel’s MCHECK/ACTM and AMD’s
ALIAS_CHECK firmware mitigations for prior, software-
based memory-aliasing BadRAM attacks [5]. In contrast to
earlier off-chip TEE attacks such as Membuster [2], which
used commercial DDR4 interposers exceeding $100,000 for
passive side-channel observations, our custom interposer
enables much stronger, active manipulation at a fraction of
the cost. Moreover, our attack is highly practical and ac-
cessible, unlike invasive fault attacks like VoltPillager [11],
which physically interposes on the CPU’s voltage regula-
tion bus to trigger unstable sporadic faults. Our method
avoids unpredictable microarchitectural behavior and instead
leverages stable, completely deterministic address aliasing
effects, posing a significant and previously underestimated
threat to modern memory encryption schemes.

Building on our minimal hardware interposer, we de-
velop more complex exploitation primitives in software. We
first examine Intel Scalable SGX, exposing for the first
time the practical implications of the weakened memory
encryption integrity guarantees introduced several years ago
with little public scrutiny or acknowledgment. Specifically,
we show that our interposer trivially enables ciphertext
replay, capture, and tampering. Moreover, we present an

innovative attack technique that exploits Scalable SGX’s
use of a single memory encryption key shared across all
enclaves, combined with the privileged adversary’s control
over physical memory allocation, to enable arbitrary plain-
text reads and writes for arbitrary victim enclaves via an
attacker-controlled helper enclave. Armed with this powerful
capability, we extract the SGX platform provisioning key,
fundamentally undermining the trust model of SGX remote
attestation. We then turn to AMD SEV-SNP and success-
fully reproduce prior BadRAM-style memory aliasing at-
tacks on fully updated platforms, even with AMD’s latest
ALIAS_CHECK firmware mitigation in place, demonstrat-
ing full compromise of remote attestation and effectively
dismantling trust in the SEV ecosystem.

Our findings provide valuable insights for the design
of current and future TEEs, highlighting the fundamen-
tal security-performance trade-off inherent in confidential
computing for large enclaves—an issue that, until now, has
received limited practical security attention and remained
mostly theoretical. More broadly, this calls for a nuanced
reassessment of the trust placed in confidential comput-
ing compared to alternatives like homomorphic encryption,
which, though less practical, offer stronger theoretical guar-
antees for outsourced computation.

Attacker Model and Scope. As per our research questions,
we explicitly set out to investigate the level of protection
that modern TEEs offer against adversaries with (temporary)
physical access to the motherboard. While we acknowledge
that vendors such as Intel and AMD currently consider “in-
vasive” physical attacks to be out of scope, physical attacks
on TEEs remain an active and evolving area of academic
and practical research [2, 5, 11, 12, 13, 14, 15, 16]. More
importantly, in the context of confidential computing in the
cloud, the threat of physical access cannot be dismissed:
adversaries may include untrusted cloud operators, rogue
personnel, supply-chain providers, or even local law en-
forcement with temporary access to server hardware. Indeed,
the very motivation behind hardware-level memory encryp-
tion is to protect sensitive data against such scenarios—
particularly against attacks that exploit DRAM access, such
as cold boot or memory bus snooping.

In this paper, we focus on widely deployed DDR4
memory systems, which are compatible with modern TEEs
such as Intel Scalable SGX and AMD SEV-SNP. Due to
the technical complexities introduced in DDR5, in partic-
ular multi-cycle commands, our interposer is not currently
compatible with DDR5 platforms. As a result, our attack
does not apply to Intel TDX, which is only available on
DDR5-capable systems. We further elaborate on the threat
model and system assumptions in Section 3.1, and reflect
on limitations and broader implications in Section 8.

Contributions. In summary, our main contributions are:

• We construct a low-cost hardware interposer to dy-
namically introduce aliases in DDR4 memory.

• We present the first breach of Scalable SGX, achiev-
ing arbitrary plaintext access to enclave memory,
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highlighting the limitations of current aliasing miti-
gations and weakened memory encryption schemes.

• We implement an end-to-end attack that compro-
mises Scalable SGX’s remote attestation.

• We bypass AMD SEV-SNP’s firmware mitigations
to revive BadRAM-style attacks.

• We analyze the broader implications of interposer
attacks for other TEEs and DDR5.

Responsible Disclosure. We disclosed our novel DDR4
interposer attack technique, including proof-of-concept ex-
ploits that enable reading and writing arbitrary plaintext
on up-to-date Scalable SGX platforms, to Intel’s Product
Security Incident Response Team (PSIRT) on January 29,
2025. Intel acknowledged our findings, which they shared
with selected customers, but noted that physical attacks are
currently considered out of scope for Intel Scalable SGX and
Intel TDX. To better reflect this position, Intel deposited the
whitepaper on Scalable SGX, previously removed from the
Intel website [6], permanently on arXiv [17]. Intel requested
an embargo until September 30, 2025, followed by a public
security announcement.

On February 10, 2025, we also disclosed our attacks
to AMD’s PSIRT, including proof-of-concept exploits that
bypass the newly introduced memory-aliasing mitigations
on up-to-date SEV-SNP platforms. AMD similarly clarified
that physical attacks are currently considered out of scope
for AMD SEV-SNP. AMD similarly requested an embargo
to prepare a security brief (AMD-SB-3024).

On June 16, 2025, we reached out to Arm PSIRT re-
garding the potential applicability of our attack to upcoming
Arm CCA processors that are not yet publicly available.
Arm responded that physical attacks are beyond the security
guarantees provided by their intellectual property, including
CCA, but shared our findings with their licensees.

Open Science. The hardware design for our custom in-
terposer and corresponding microcontroller firmware, along
with the attack scenarios described in this paper, are avail-
able at https://github.com/batteringramattack/batteringram.

2. Background and Related Work

2.1. Trusted Execution Environments

Trusted Execution Environments (TEEs) are hardware-
enforced execution environments that ensure isolation of
data and computations from the rest of the system, including
privileged software such as the operating system or hypervi-
sor. They are relevant in cloud scenarios where the provider
or infrastructure may not be fully trusted. TEEs aim to
provide confidentiality and integrity against malicious co-
tenants, compromised hosts, and limited physical attackers.

One of the first commercial TEEs, Intel’s Client Soft-
ware Guard Extensions (SGX), enabled isolated memory
regions, or enclaves, within applications on commodity Intel
processors [18]. Intel later extended SGX to servers with

Physical address
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Figure 1. Simplified visualization of DRAM addressing.

Scalable SGX [6]. Intel’s latest TEE, Trust Domain Exten-
sions (TDX) [19], protects entire Virtual Machines (VMs),
also referred to as Confidential VMs. AMD, similarly, pro-
vides Secure Encrypted Virtualization (SEV) [20]. Subse-
quent versions introduced confidentiality for the register file
with SEV Encrypted State (ES) [21], and memory layout in-
tegrity with SEV Secure Nested Paging (SNP) [10]. Finally,
Arm recently announced Confidential Compute Architecture
(CCA), protecting VMs on Arm processors [22]; however,
no hardware supporting CCA is currently available.

Memory Encryption. All current TEEs implement memory
encryption to protect data in external memory. Client SGX,
one of the early TEEs, used strong cryptographic primitives
to provide confidentiality, integrity, and freshness [9]. How-
ever, through these constructs, it was limited to protecting
only up to 128 or 256 MB. To avoid this bottleneck, newer
“scalable” TEEs, including Scalable SGX, TDX, SEV, and
CCA, trade off some of these guarantees to protect the entire
memory range. They employ a deterministic encryption
scheme with an address-dependent tweak to ensure scala-
bility while still maintaining confidentiality. Scalable SGX,
for instance, builds upon Total Memory Encryption (TME),
which uses a single key to encrypt the entire memory range
using AES-XTS [23]. Similarly, TDX relies on Total Mem-
ory Encryption-Multi-Key (TME-MK), with a dedicated key
for each Trust Domain (TD) [24]. SEV encrypts data using
AES-XEX with a separate key per guest [20]. Finally, CCA
employs either AES-XEX or QARMA.

2.2. DRAM Addressing

Dynamic Random-Access Memory (DRAM) stores data
as electrical charge in capacitors arranged into a two-
dimensional grid, called a bank. To access data, the cor-
responding row must first be activated by copying it into
the row buffer. Once activated, read and write instructions
can be issued by specifying the column within that row.
Only one row per bank can be active at any given time.

In DDR4, each DRAM chip typically consists of 16
banks organized into four bank groups. Optionally, high-
density chips may use 3-Dimensional Stacking (3DS), where
multiple dies are integrated into a single package. Several
DRAM chips operate in parallel to form a rank. Typi-
cally, DDR4 Unbuffered Dual In-line Memory Modules
(UDIMMs) contain 8 or 16 DRAM chips per rank, while
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Figure 2. DDR4 command encoding [27]. Values can be either high (H),
low (L), valid (V), or don’t care (X). BA, BG, and CA refer to bank
group, bank address, and column address, respectively. Chip ID (CID) is
only defined for 3DS devices, otherwise valid. Note that some columns
represent multiple lines (i.e., BG, BA, CID, and A9-0).

Registered Dual In-line Memory Modules (RDIMMs) con-
tain one or two additional chips that store Error-Correcting
Code (ECC) bits. DIMMs are organized in channels. Upon
accessing a certain location, the memory controller trans-
lates the physical address into the corresponding DRAM
address consisting of channel, rank, bank, column, row,
and optionally Chip ID (CID) bits. Figure 1 provides an
overview. In practice, physical address bits are not mapped
one-to-one with DRAM addressing bits to improve perfor-
mance [25, 26].

Communication between the memory controller and
DRAM occurs over the Command/Adress (CA) bus. This
bus conveys commands such as row activation (ACT),
read (RD), write (WR), and refresh (REF). On DDR4, the
CA bus consists of 26 lines, including 18 address lines
(A17-0) [27]. These bits are used to encode both the
memory addresses (e.g., row or column), command types,
and additional options, depending on the specific command.
The command encoding is standardized by JEDEC and
shown in Figure 2.

RDIMMs, commonly used in server platforms, include a
Registering Clock Driver (RCD) between the processor and
DRAM chips [28]. The RCD buffers data and commands,
reducing the electrical load on the bus. It also performs
parity checking on the CA bus to detect transmission errors.

2.3. Off-Chip Physical-Access Attacks

Memory Bus Snooping. Lee et al. employed a commer-
cial DDR4 interposer, costing approximately $170,000, to
passively snoop the memory address bus [2]. Since ad-
dresses are transmitted unencrypted, their interposer enabled
side-channel attacks by observing secret-dependent enclave
memory access patterns. As Scalable SGX had not yet been
released, their analysis was limited to passive address side
channels targeting Client SGX.

Although expensive commercial interposers are capable
of capturing DRAM traffic, they are, to our knowledge,
limited to passive observation and would thus only support
hardware-aided ciphertext side-channel analysis on Scalable
SGX, similar to software-based ciphertext side-channel at-
tacks on AMD SEV-SNP [3]. In contrast, Battering RAM
demonstrates much more powerful, active manipulation of
the DRAM bus with a low-cost setup, ultimately enabling
arbitrary plaintext access to Scalable SGX enclave memory.

Memory Aliasing. De Meulemeester et al. manipulated
the configuration data in a DIMM’s Serial Presence Detect
(SPD) flash chip to cause aliasing in the physical address
space, circumventing CPU access control mechanisms [5].
They leveraged this “BadRAM” attack primitive, typically
requiring one-time physical access, to mount attacks on
AMD SEV-SNP and Client SGX. However, they found
that newer Intel TEEs, including Scalable SGX and TDX,
already mitigate such attacks via boot-time alias checks [6].
In response, AMD introduced a similar firmware mitiga-
tion [7]. Hence, it is believed that major commercial TEEs
are no longer vulnerable to such static memory aliasing.

Focusing on hardware trojans beyond TEEs, Hopkins
et al. constructed an FPGA-based interposer to redirect
addresses on DDR3 memory [29]. Their FPGA-based in-
terposer modifies DDR3 commands by downclocking the
bus to 400 MHz and extending SPD latencies. DDR4, how-
ever, has a minimum clock frequency of 800 MHz, which
poses much stricter timing constraints. While high-end
FPGAs could theoretically meet these timing constraints,
their cost and the engineering challenges, including timings,
impedance matching, and signal integrity, would consider-
ably complicate the design. In contrast, we achieve similar
functionality with a simple and low-cost setup.

Fault Injection. Developing low-cost custom hardware,
Chen et al. showed that by injecting malicious control pack-
ets into the bus between CPU and external voltage regulator,
faults can be injected into enclaved computations in Client
SGX [11]. These faults can then be leveraged to, e.g.,
recover cryptographic keys from SGX enclaves, depending
on the nature of the target code. Buhren et al. adopted a
similar approach to fully break AMD SEV, installing custom
firmware on AMD’s security co-processor [13].

Techniques that target the physical data, address, and
control lines between a processor and its external memories
have been explored in the past to bypass security features:
a jailbreak of the Nintendo Wii gaming console is based
on shorting pins on the memory bus to create memory
aliasing [30]. To enter the (normally disabled) bootloader
of embedded devices such as LTE routers, Dixon used
needles to short memory data lines to cause failure dur-
ing the boot process [31]. Beyond physically connecting
to signals, other works have shown memory manipulation
attacks with proximity: Cui use electromagnetic pulses to
corrupt data in memory and bypass TrustZone-based secure
boot on an Arm processor [12]. Along similar lines, Mishra
et al. characterize and exploit electromagnetic faults on
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the memory bus to attack TrustZone applications [16]. In
contrast to our work, all of the aforementioned attacks rely
on application-specific, probabilistic faults and are mostly
limited to TrustZone.

To facilitate the analysis of Rowhammer effects, Cojocar
et al. developed a low-cost DDR4 interposer to filter out
refresh commands on the memory bus [32]. Gloor et al. re-
cently proposed a similar platform for DDR5 memory [33].
However, these interposers only filter refresh commands and
thus cannot be used to bypass TEE security.

3. Memory Interposer for Dynamic Aliasing

In this section, we present a minimal, low-cost DDR4
interposer that enables dynamic memory aliasing at runtime,
bypassing existing boot-time alias checks and reactivating a
potent class of memory-aliasing attacks.

3.1. Attacker and System Model

We assume an adversary with root privileges on the tar-
get system, consistent with the standard TEE threat model.
Additionally, the attacker has (temporary) physical access
to the device—sufficient to install an interposer. Our mini-
mally invasive interposer design does not require permanent
modifications and could be deployed, for example, in a
brief supply chain compromise to extract the Scalable SGX
attestation key (cf. Section 5).

At the system level, we focus on platforms with DDR4
memory, which remains widely deployed and is compat-
ible with both Intel Scalable SGX and AMD SEV-SNP.
We assume systems are fully up to date with the latest
firmware and hardware mitigations, including boot-time
alias checks such as Intel’s MCHECK and ACTM [6], and
AMD’s ALIAS_CHECK [7].

3.2. Interfering with DRAM addressing

While data sent between the CPU and DRAM is en-
crypted, the commands are not, allowing a physical attacker
to interfere with them. By inserting themselves between
the CPU and DRAM, adversaries can, theoretically, arbi-
trarily modify the sent commands, modifying, dropping,
or replaying them at will. In practice, however, building a
full interposer capable of real-time command manipulation
at DDR4 speeds is highly complex and poses significant
engineering and cost challenges. As a result, such attacks
are largely considered impractical. Instead, a more practical
attack may consider only tampering with a single or limited
number of lines. In this section, we investigate the possibility
of creating dynamic aliases in the CPU’s physical memory
view by manipulating the CA lines on DDR4 DIMMs.

Command Encoding. To reduce the number of required
data lines between the CPU and DIMM, the different lines of
the CA bus may take on different semantic roles depending
on the command being sent. Figure 2 on page 4 summarizes
the DDR4 command encoding.

Figure 3. Our DDR4 interposer, containing two analog switches (bottom
center) controlled by a microcontroller (left). The switches can dynamically
either pass through the command signals to the connected DIMM or
connect the respective lines to ground.

To introduce aliases, the attacker must modify or in-
terfere with the DRAM address (i.e., the row, column, or
bank bits) being transmitted over the memory bus. However,
modifying a single bit in a single command is challenging
due to the high frequency at which DDR4 operates. Such
manipulations require very precise control logic operating
at multiple GHz. Instead, a more rudimentary solution is to
simply ground one (or more) CA lines. For instance, from
Figure 2, we can see that all lines except A16-14, A12, and
A10 have no semantic role outside of the MRS command
other than containing bank, chip ID, and row or column
bits. Outside of the commands that require these bits, these
lines only need to hold arbitrary (but valid) values. This
makes them interesting targets for injecting faults; tying
one of these lines to, e.g., ground, will effectively alter
the address received by the DIMM without impacting the
other commands. This creates aliases: two distinct system
addresses—one where the bit is set to zero and another
where it is set to one—end up mapping to the same physical
location in DRAM. Since this interference occurs after the
CPU has issued its commands, the CPU remains unaware
of the manipulation.

While an attacker could consider targeting bank-group
or bank-address lines, these bank bits are usually mapped
to the lower bits of the physical address [25, 26], making
controlling the aliases difficult. Likewise, faulting one of
A9-0 would affect both a row and column bit, complicating
the aliasing. Additionally, CID bits are only defined for 3DS
devices, restricting the impact of the interposer to only high-
density DIMMs. As a result, we target the row address bits
A11 and A13. These are present on all DDR4 DIMMs and,
aside from the MRS command, are only used to define the
11th and 13th row address bit. Since the MRS command is
only used to configure the DRAM registers during boot, this
will not create any conflicts at runtime.

Physical Interposer. To facilitate the manipulation of A11
and A13, we designed a DDR4 interposer that sits between
the CPU and DIMM, shown in Figure 3. The interposer
places analog switches on either of the two aforementioned
row address lines, allowing it to either pass the values
undisturbed or break the connection and ground the line to
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CPU

Interposer

0

A16A17

Row bits not in
use by DIMM

Figure 4. Interfering with DDR4 addressing. A switch, controlled by a
microcontroller, dynamically pulls a DRAM line to ground.

the DIMM. A schematic overview of the operation of this
interposer is given in Figure 4. During normal operations,
all CA lines are directly connected to the CPU. However,
through a switch, the attacker can force either A11 or A13
to ground, creating aliases in the CPU’s physical address
space. When active, the DRAM chips will always see this
bit as low, regardless of the actual value sent out by the
CPU. Note that the resulting aliasing only works in one
direction; only the DRAM location with the bit not set can
be accessed while the interposer is active.

The switches are controlled by a microcontroller (Rasp-
berry Pi Pico 2), which enables their activation only for the
duration of the attack. This microcontroller is connected to a
second, attacker-controlled device, providing an interface to
toggle the switches dynamically at runtime. This enables the
interposer to bypass any boot-time alias checking as present
in Scalable SGX and SEV-SNP [6, 7].

A complete bill of materials is provided in Table 1.
Our design consists mainly of off-the-shelf components.
The only custom part, the Printed Circuit Board (PCB),
is a standard four-layer board that can be manufactured
inexpensively, even in low quantities. The total cost of
our interposer is less than $50, many orders of magnitude
cheaper than existing attacks that employ commercial signal
analyzers to snoop the memory bus [2].

TABLE 1. BILL OF MATERIALS FOR OUR DDR4 INTERPOSER.

Item Part Number Qty. Cost

Printed Circuit Board N/A 1 $18.49
DIMM connector CONN-DDR4-288-SM 1 $16.00
Microcontroller Raspberry Pi Pico 2 1 $5.00
Analog switch ADG902BRMZ 2 $8.00
Voltage regulator LD1117S25TR 1 $0.65
Miscellaneous resistors/capacitors $0.50

Total $48.64

3.3. Bypassing RCD Parity Checking

Unlike UDIMMs, RDIMMs contain an RCD chip to
reduce the electrical load on the memory bus. In addition
to buffering commands, the RCD optionally performs parity
checking on the CA bus. This (even) parity signal is sent
out by the memory controller and covers all CA bits to

A15 A14 A13 A12 A11 A10 A9A16A17

A15 A14 A13 A12 A11 A10 A9A16A17RCD

CPU

Interposer

PAR

PAR

0

Row bits
not in use
by DIMM

(a) Single switch.

A15 A14 A13 A12 A11 A10 A9A16A17

A15 A14 A13 A12 A11 A10 A9A16A17

PAR

PAR

0

RCD

CPU

Interposer

(b) Redirecting address line.

A15 A14 A13 A12 A11 A10 A9A16A17

A15 A14 A13 A12 A11 A10 A9A16A17RCD

CPU

Interposer 0

PAR

PAR

0

(c) Dual switches.

Figure 5. Bypassing RCD parity checks.

detect transmission errors between the CPU and DIMM.
As a result, faulting a single bit on RDIMMs will cause a
parity error that will result in the command being discarded,
as shown in Figure 5a. Additionally, upon detection, the
RCD will notify the CPU through the ALERTn line. To
avoid triggering parity errors, we identified three practical
techniques to bypass this verification.

Disabling RCD Parity. The RCD only performs parity
checking if it is explicitly enabled in the F0RC0E configura-
tion register. In theory, the RCD is connected to the SMBus,
exposing these registers to attackers. In our experiments,
however, we found the I2C communication of the RCD to
be disabled on both of our test platforms, preventing this.
While the I2C interface should be enabled by default, the
BIOS may choose to disable it through the F0RC2x register.
However, interestingly, we found that our AMD platform
exposed the parity configuration through the BIOS settings.

Redirecting Data Lines. While the RCD ensures the in-
tegrity of the command lines, it is agnostic to the actual size
of the connected DRAM chips. As a result, it will perform
the parity calculation over all received bits, regardless of
whether they are connected to the DRAM chips. Since
the parity calculation is simply an XOR of all CA bits,

6



TABLE 2. OVERVIEW OF EVALUATION SYSTEMS USED IN THIS PAPER.

System TEE Mainboard CPU DIMM(s) DRAM

AMD1 SEV-SNP ASRock ROMED8-2T EPYC 7313P 1×MTA36ASF8G72PZ-3G2F1
1×MTA36ASF4G72PZ-3G2R1 DDR4 RDIMM

Intel1 Client SGX Dell D11S001 Core i5-6500 1×HMA41GU6AFR8N DDR4 UDIMM
Intel2 Scalable SGX Supermicro X12DPi-NT6 Xeon 6330 16×HMAA4GR7AJR8N-XN DDR4 RDIMM

swapping or redirecting bits will produce the same parity
output. Specifically, instead of only tying an address bit to
ground, we can redirect its original value, sent by the CPU,
to A17, the most significant row address bit, as shown in
Figure 5b. If this bit is not in use, it will simply be ignored
by the DRAM chips, similar to the principle used in [5].

Multiple Switches. Since the parity function XORs all bits
together, tampering with two bits will result in the same
parity bit. If both bits switch their value simultaneously, the
changes cancel out, and parity is preserved. More precisely,
both A11 and A13 can be fitted with a switch to simul-
taneously ground these lines, shown in Figure 5c. Memory
locations where these two lines are high will be aliased with
a different location where these bits are low, assuming the
switches are active. Crucially, this technique only preserves
parity when both bits have the same value. When only a
single address line is high, grounding both will result in
a parity mismatch. Therefore, the attacker must carefully
control the memory layout to ensure that the system does not
use these addresses. This aligns with the TEE threat model,
in which the adversary is assumed to have full control over
the host operating system. As such, the attacker can control
the memory allocation to only allocate pages that will not
crash the system.

4. Interposer Evaluation

We first evaluate the effectiveness and stability of our
custom DDR4 interposer before mounting end-to-end at-
tacks on Intel Scalable SGX (Section 5) and AMD SEV-
SNP (Section 6).

4.1. Experimental Setup

We evaluated our interposer on three systems, listed in
Table 2 and encompassing AMD SEV-SNP, Intel Scalable
SGX, and Intel Client SGX. In each system, a single DDR4
DIMM is equipped with our custom interposer. Figure 6
shows the interposer installed in the AMD SEV-SNP and
Intel Scalable SGX platforms.

Memory Layout. To avoid unintended aliasing of criti-
cal memory regions (e.g., kernel memory, ACPI memory-
mapped I/O, etc.) via the interposer, the attacker must
carefully control the memory layout. These sensitive regions
typically reside within the lower 4 GB of the physical ad-
dress space.

On AMD1, we leveraged BIOS options to disable mem-
ory interleaving. This allowed us to map the entire lower
physical address space to an unaffected DIMM. On Intel2,
a dual-socket system, the memory regions for each socket
are logically separated. Since we install a single interposer
on the second socket, the lower physical address space
associated with the first socket remains unaffected. Further-
more, the Linux kernel memmap parameter can be used to
reserve the entire physical memory range corresponding to
the second socket, preventing unintended allocations to the
interposer-connected DIMM that may affect system stability.

Unstable Regions. On RDIMMs, the interposer may intro-
duce unstable memory regions due to RCD parity checking,
as discussed in Section 3.3. When using two switches (cf.
Figure 5c), parity checks fail if only one of the two asso-
ciated address lines is active, resulting in a system crash.
To alleviate this, the ALERTn line can be disconnected,
preventing the DIMM from reporting the parity error to
the CPU [32]. Alternatively, since the physical-to-DRAM
address mapping is deterministic, the affected regions can
be reserved using the Linux kernel’s memmap parameter to
prevent the OS from allocating them.

To identify the unstable regions on our platform, we
reverse-engineered the physical-to-DRAM mapping of the
two affected row address bits A11 and A13 by observing
which physical address ranges trigger system crashes when
only a single switch is active. These crashes correspond
to cases where the respective CA line is driven high. On
AMD1, the affected row address bits A11 and A13 corre-
spond to physical address bits 28 and 30, respectively. On
Intel2, they correspond to bits 31 and 33, respectively.

4.2. Evaluation of RCD Parity Check Bypassing

Single Switch. On Intel1 (Client SGX with UDIMM without
RCD parity checking), a single switch on either A11 or A13
reliably introduced aliases. These bits correspond to physical
address bits 28 and 30, respectively.

On both SEV-SNP and Scalable SGX server systems
equipped with RDIMMs, pulling a single address line causes
a system crash when accessing affected addresses due to
RCD parity checking (cf. Figure 5a). Interestingly, the BIOS
on our ASRock motherboard (AMD1) provides an option to
disable RCD parity checking. We experimentally verified
that disabling RCD parity checking this way indeed sup-
presses parity errors and enables aliasing.

Redirecting Data Lines. To bypass RCD parity checking,
we experimented with redirecting A11 or A13 to the unused
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(a) Intel2. (b) AMD1.

Figure 6. Battering RAM DDR4 interposer installed in our test systems (cf. Table 2).

row bit A17 (cf. Figure 5b). This technique was successful
on AMD1, but failed on our Intel system. We suspect this is
because the Intel system explicitly disables the A17 input
buffer through an RCD configuration register (F0RC08),
preventing it from participating in the parity calculation.

Multiple Switches. Finally, we evaluated both RDIMM
platforms using interposers with two switches (cf. Fig-
ure 5c). We confirmed that pulling two bits simultaneously
indeed bypasses RCD parity checking and successfully in-
troduces aliasing. This approach may still introduce unstable
memory regions, where only one of the two bits is set, which
must be carefully mapped out to avoid crashes, as explained
above.

As this technique is the most general, we use an inter-
poser with two switches on both Intel2 and AMD1 for the
remainder of the paper.

Stability. To evaluate the impact of the interposer on
system stability, we performed memory stress tests using
MEMTEST86+ and stress-ng. Due to unstable memory
regions, MEMTEST86+ can only be run when the interposer
is inactive. We tested each system at its default memory
speeds (i.e., DDR4-3200 for AMD1, DDR4-2133 for Intel1,
and DDR4-2933 for Intel2). During these memory stress
tests, we did not observe any crashes with the interposer,
whether inactive or active.

We did, however, occasionally observe random crashes
when accessing aliased Enclave Page Cache (EPC) pages
when prototyping the Scalable SGX attacks on Intel2. Al-
though the precise cause of these occasional crashes remains
undiagnosed, they only required a system reboot and did not
prevent successful memory aliasing attacks.

4.3. Discussion

Feasibility. As demonstrated by the memory stress tests,
the interposer remains stable at the default DRAM clock

frequency. As such, our interposer has no discernible per-
formance overhead and remains completely invisible to the
operating system.

Additionally, as the physical-to-DRAM address mapping
is fixed, the aliasing is fully deterministic. If the victim
location and its alias are known, its contents can be captured
and replayed with 100% accuracy.

Limitations. To enhance performance, modern systems may
interleave memory across multiple DIMMs. As a result,
on systems with multiple DIMMs, a single interposer can
only observe a fraction of the memory lines belonging to a
page. For instance, on Intel2, a dual-socket system with 16
DIMMs, a single interposer can access only 1/8th of the
cache lines for a given page within the socket it is attached
to. While installing an interposer on every DIMM would
eliminate this limitation, we found that in practice, a single
interposer combined with careful memory allocation was
sufficient to carry out our attacks.

5. Breaking Scalable SGX

In this section, we describe how the interposer can be
used to break the integrity and confidentiality of Scalable
SGX, Intel’s second-generation SGX for server environ-
ments. While Scalable SGX comes with built-in counter-
measures against aliasing attacks, making it immune to
BadRAM attacks [5], we show how the dynamic nature of
the aliases introduced by the interposer, along with carefully
allocated EPC pages, can bypass these mitigations. Addi-
tionally, we show how the interposer breaks Scalable SGX’s
confidentiality, relying on the static nature of the memory
encryption. Finally, we describe a severe end-to-end attack
that extracts the provisioning key from the Provisioning
Certification Enclave (PCE), allowing an attacker to generate
valid quotes without access to the system.

The ability to perform these attacks stems from the de-
terministic encryption provided by Scalable SGX. While the
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original Client SGX provided a strong Memory Encryption
Engine (MEE) [9], providing cryptographic confidentiality,
integrity, and freshness, Intel has moved away from these
strong protections due to their inherent limitations: integrity
and freshness require cryptographic Message Authentication
Codes (MACs) and an integrity tree, creating performance
and storage overhead and severely limiting the protected
memory size [6]. Scalable SGX, instead, relies on TME
for confidentiality, using a single key for the entire SGX-
reserved memory range [6]. TME encrypts the entire mem-
ory range using AES-XEX, a static memory encryption
scheme with an address-based tweak. Contrary to Client
SGX’s MEE, TME does not provide integrity or freshness
and instead relies on additional access control mechanisms
to prevent access to the ciphertexts.

5.1. Aliasing Mitigations

Due to the deterministic nature of the memory encryp-
tion, additional measures are required to avoid ciphertext
side channels [3, 4] and ciphertext replay attacks [5] via
memory aliasing. Intel distinguishes between two types
of aliases: outside-in and inside-in aliases, where an EPC
page aliases with another page outside or inside the EPC,
respectively [6]. To this end, Scalable SGX features two
defenses to prevent aliasing: the owner bit and a boot-time
alias check.

Owner Bit. To prevent outside-in aliasing, SGX repurposes
one of the ECC bits to store an owner bit, which indicates
whether the cache line belongs to enclave or regular mem-
ory. The memory controller sets this bit on every memory
write, depending on the current execution context. On every
read, it checks whether it matches the current domain. Upon
a mismatch, the CPU will either return a fixed pattern of all
zeros (when reading an EPC cache line from a non-secure
address) or disable SGX in the other case.

Boot-Time Alias Check. The owner bit is only effective
against aliases that cross the security domain. Any aliases
between two EPC locations will remain undetected. To
prevent inside-in aliases, MCHECK, or the Alias Checking
Trusted Module (ACTM) starting with 4th generation Xeon,
performs an alias check at boot time [34]. If any aliases
are detected, SGX is disabled. This check can effectively
mitigate attacks such as BadRAM [5], where the modified
SPD causes the aliases to be present from the start. However,
any aliases introduced dynamically at runtime, such as with
our interposer, will remain undetected.

5.2. Interposer Attack

As discussed in the previous section, existing SGX
countermeasures are insufficient to prevent interposer-based
aliasing attacks. The boot-time alias checks can be bypassed
by only activating the switches during the attack. Similarly,
the owner bit only provides logical isolation; aliases between
two EPC pages are not detected. We exploit these limitations
to build an end-to-end attack on Scalable SGX.

Allocating Aliasing Pages. To perform an aliasing attack
within the EPC, the attacker needs fine-grained control over
the EPC memory allocation to ensure attacker and victim
reside at aliasing locations. To achieve this, we extended
the out-of-tree Linux SGX driver to provide precise control
over the allocated pages. We expose a new method in the
driver’s ioctl interface that allows the attacker to specify
the desired physical address for the next EPC allocation(s).
This is facilitated through minimal changes in the memory
allocator; instead of returning the first page in the free-page
list, we iterate through the list until the physical address
is found. If no specific address is specified, the modified
driver returns pages that are unaffected by the interposer
(i.e., where both A11 and A13 map to zero).

To lay out aliasing victim and attacker enclaves, the
attacker performs the following steps: (1) create the victim
enclave, which will be allocated to unaffected memory pages
if no address is specified; (2) identify the physical address
containing the secret and compute its alias; (3) configure the
modified driver to allocate the attacker’s buffer at the alias.

5.3. Arbitrary Plaintext Access

Scalable SGX relies on TME to protect data in DRAM.
Unlike SEV and TME-MK, which use a different encryption
key for every confidential VM, TME uses a single key,
generated randomly at boot-time, for the entire memory
range. While this provides confidentiality against single-read
attacks, such as cold boot attacks, it cannot defend against
repeated reads or replay attacks. Furthermore, the use of a
single key enables arbitrary plaintext access when capturing
and replaying ciphertexts through aliases. Replayed cipher-
texts, whether decrypted by the victim or attacker, will yield
valid plaintext since the encryption function only relies on
the physical address.

Arbitrary Plaintext Reading. Figure 7 provides a
schematic overview of accessing plaintext data from victim
enclaves. First, the attacker launches the victim enclave and
sets up its own attacker enclave with a buffer that aliases
with the victim secret (➀). At this point, both enclaves are
still independent and cannot yet interfere with each other.
Next, the attacker enables the interposer (➁). Because the
attacker enclave was set up to alias with the victim, both en-
clave buffers will now point to the same location in DRAM.
From here, the attacker can capture the victim’s ciphertext
by reading its buffer and storing it in a second, non-aliasing
buffer (➂). This access is allowed by the memory controller
because it is performed from another enclave, thus matching
the owner bit, which indicates enclave memory. Afterward,
the attacker disables the interposer and terminates the victim
(➃). At this point, the attacker cannot yet access the plaintext
because it was accessed from the alias and thus decrypted
using a different tweak value.

To retrieve the plaintext secret, the attacker launches
a second attacker-controlled enclave, using our modified
driver to allocate it at the same physical address as the victim
(➄). After enabling the interposer (➅), the attacker can
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Figure 7. Overview of interposer-enabled arbitrary plaintext access in
Scalable SGX. A single key is used to encrypt all enclave memory, with
the physical address of the access applied as a tweak. By aliasing victim
enclave pages, a Battering RAM adversary can capture ciphertexts in a
first attacker enclave and later replay them into a second attacker enclave
mapped to the victim’s original physical address, recovering the plaintext.

now replay the captured ciphertext into the second attacker
enclave (➆). Because this second enclave was allocated at
the same physical address as the original victim, reading
from this location will yield the original plaintext as it is
now decrypted with the correct tweak (➇).

Arbitrary Plaintext Writing. The same methodology can
also inject arbitrary plaintext into victim enclaves. Instead of
capturing ciphertext from the victim, the attacker first writes
controlled plaintext into an attacker-controlled enclave and

captures the corresponding ciphertext from an alias using
the interposer. Afterward, the attacker launches the victim,
ensuring it is allocated at the same physical address, ac-
tivates the interposer, and replays the previously captured
ciphertext from the alias. Like before, TME’s use of a single
key means that the encryption relies solely on the physical
address. When the victim reads the modified location, it will
see the attacker’s plaintext as it was allocated to the same
physical address using our modified driver.

Evaluation. To demonstrate the feasibility of this attack,
we implemented a basic proof-of-concept on Intel2, a dual-
socket system containing a total of 16 DIMMs. Instead of
installing 16 interposers, we instead install a single inter-
poser on the second socket. While this limits the aliasing to
certain physical addresses, it allows us to reserve the entire
physical memory range corresponding to the second socket,
preventing unintended allocations to the interposer DIMM
that may affect system stability.

Note that the eight DIMMs belonging to one socket
are interleaved in the physical address space to improve
performance. As a result, a single interposer only affects one
out of eight cache lines within a physical page. The smallest
contiguous size that could be aliased with a single interposer
on our system is 256 B. While installing eight interposers
would solve this problem, we found that a single interposer
is sufficient to carry out our attacks.

We create a dummy victim enclave that allocates a buffer
and initializes it with a known value. Using our modified
SGX driver, we ensure that all victim pages are allocated on
unaffected memory pages (i.e., A11 and A13 not set). We
then interrupt the victim and retrieve the physical address
of the buffer, from which we compute the aliasing location.
After enabling the interposer, we capture the ciphertext
through the attacker enclave. We then terminate the victim
and launch the second attacker enclave, assigning its buffer
to the same physical address as the victim’s buffer using our
modified SGX driver. Finally, we enable the interposer and
replay the ciphertext into our attacker buffer. We verified
that data read by the second attacker enclave matches the
value set by our dummy victim, thus successfully extracting
plaintext from SGX enclaves.

5.4. Extracting Provisioning Key

To demonstrate the practicality of interposer-based alias-
ing attacks on Scalable SGX, we perform a destructive end-
to-end attack that fully breaks SGX’s remote attestation
guarantees. This serves as a convincing demonstration that
the platform is fundamentally compromised—akin to prior
high-impact attacks that extracted SGX attestation keys via
transient execution CPU vulnerabilities [35, 36, 37, 38, 39],
which have since been mitigated through microcode updates
and Trusted Computing Base (TCB) recovery. While those
earlier attacks targeted Client SGX’s Enhanced Privacy ID
(EPID)-based attestation model, we, for the first time, break
Scalable SGX’s newer data-center third-party attestation
framework [40]. First, we describe the attestation flow when
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Figure 8. Overview of the PCE attack. The attacker requests the PCE to
certify an enclave (➀). This ECDSA key is generated from the hardware
provisioning key (➁). While this key is on the stack, the attacker interrupts
the PCE (➂), and retrieves it using our plaintext primitive (cf. Figure 7).

using a third-party Quoting Enclave (QE). During this pro-
cess, the third-party QE is certified by the PCE using a
hardware-provided key. Using the interposer, we show how
a physical attacker can extract this hardware key, allowing
them to certify arbitrary QEs, even without access to the
system.

QE Certification. To enable attestation in scenarios where
SGX’s original EPID-based attestation is unsuitable, such
as offline environments, Intel introduced the Datacenter
Attestation Primitives (DCAP) [40]. DCAP introduces a
range of tools and online services that enable third parties
to create their own attestation infrastructure. In particular,
DCAP enables third-party QEs, allowing local attestation
and quote generation instead of relying on Intel’s QE.

Central to the DCAP attestation flow is the PCE, an
Intel-signed architectural enclave responsible for certifying
third-party QEs. The PCE issues certificates to QEs by
signing their public keys with a platform- and TCB-specific
ECDSA key, the Provisioning Certification Key (PCK). The
PCE, in turn, is signed by Intel’s root certificate, creating
a verifiable certificate chain, enabling the authentication of
the quote and platform state at the time of quote generation.

The PCK is derived from the provisioning key, a 128-bit
AES key rooted in hardware, and only accessible to Intel-
signed enclaves with the ProvisionKey attribute, such as
the PCE. When certifying a new QE, the provisioning key
is retrieved using EGETKEY and is used to derive the PCK,
after which the key is cleared from memory. The derivation
ensures that the PCK is unique for a given platform and
TCB and does not require persistent storage to store the
private key.

Provisioning Key Extraction. The PCE uses the PCK, de-
rived from the provisioning key, to sign and certify enclaves.
If an attacker were to obtain the provisioning key or the
PCK, they could forge certificates for arbitrary enclaves,

even without access to the victim platform. This could,
for instance, be exploited in a supply-chain attack. The
extracted key would remain valid until a TCB recovery or
SGX factory reset. This compromises the certification chain
and, thereby, the attestation in Scalable SGX.

We extract the hardware provisioning key using the
plaintext access discussed before, Figure 8 provides a sum-
mary. We prepare the PCE by allocating its pages into
aliasing memory through the modified SGX drivers. Using
the arbitrary read and write primitive described before, we
are able to extract the provisioning key while it is loaded in
memory. However, the provisioning key is only present on
the stack during PCK derivation and is cleared afterwards.
This derivation is performed each time the PCE certifies
a new QEs (➀). In order to extract the key, the attacker,
therefore, has to interrupt the PCE during key derivation
(➁). More specifically, we modify the page tables to induce
a page fault at the code page containing sgx_ipp_newBN
(➂), a helper function in Intel’s Integrated Performance
Primitives (IPP) library used during the ECDSA key gener-
ation. This page fault transfers control back to the attacker
while the provisioning key remains on the stack, enabling
the attacker to capture it from the alias.

With the PCE interrupted, the attacker can set up the
attacker enclave with a buffer at the aliasing address to
the provisioning key’s stack location. After enabling the
interposer, the attacker can capture the ciphertext containing
the provisioning key by reading from the buffer set up in
the attacker enclave. The attacker then disables the inter-
poser, terminates the PCE, and launches the second attacker
enclave with a buffer at the same physical addresses as the
original PCE. By enabling the interposer and replaying the
ciphertext, the attacker can now get a plaintext memory
dump of the PCE by reading from the second buffer. By cap-
turing the stack contents using this technique, the attacker
can locate and extract the provisioning key. In practice, the
end-to-end PCE attack completes within seconds and exe-
cutes deterministically, with no noise (aside from occasional
non-disruptive crashes that require a reboot).

While the PCE theoretically employs stack randomiza-
tion, we found that the provisioning key is consistently
located at offset 0x1c_eeaa. This offset was determined
by locating the constant string PAK_KEY_DER—used as
input to AES-CMAC for key derivation—which is located
at offset 0x20 from the provisioning key. We verified the
correctness of the extracted key by matching it against valid
signatures generated by the genuine PCE. The extracted
key allows an attacker to forge attestation certificates for
arbitrary QEs, fundamentally undermining SGX’s remote
attestation guarantees, essentially enabling active man-in-
the-middle attacks on any application enclave, or even
spoofing valid responses from the compromised platform
without requiring further access to it.

6. Breaking AMD SEV-SNP

In this section, we demonstrate how our interposer
can bypass the boot-time alias check introduced by AMD
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in response to BadRAM [7]. This alias check is de-
signed to restore the integrity guarantees to SEV-protected
VMs by disabling the system if aliases are detected. The
result of the alias check is communicated through the
ALIAS_CHECK_COMPLETE field of the guest attestation
report and platform info.

6.1. Bypassing Alias Checks

While the alias check effectively mitigates SPD-based
aliasing attacks, the interposer enables the introduction of
aliases at runtime. Since this check only runs once at boot
time, these aliases cannot be detected.

Setup. We evaluated our DDR4 interposer on AMD1, run-
ning the latest available Platform Initialization (PI) firmware
v1.0.0.D and SEV firmware v1.55.29. We experimentally
verified that this latest PI detects spoofed SPD contents,
refusing to boot when creating memory aliases using
BadRAM [5]. To ensure system stability, we equipped our
system with two DDR4 DIMMs, one for regular memory
and one module, installed on the interposer, for introducing
aliases. This setup is also shown in Figure 6b. We attached
the microcontroller controlling the interposer to a separate
machine, enabling us to synchronize the activation and
deactivation of the switches on the interposer. While the
BIOS on our system allowed us to disable RCD parity, we
opted to leave it enabled, instead falling back to adding
switches to both A11 and A13 (cf. Figure 5c).

To avoid unintended interference with kernel or firmware
memory regions, we ensured all allocations were performed
to either the first, unaffected DIMM, or to the safe regions of
the interposer DIMM (i.e., where A11 and A13 are zero). To
achieve this, we disabled memory interleaving in the BIOS
and placed the unaffected DIMM in the lower address range,
covering the first 4 GB of physical memory. Additionally,
we relocated the private memory regions (i.e., those used
by the Secure Processor (SP), System Management Unit
(SMU), and CC6), which typically reside at the top of
physical memory, to the unaffected DIMM through BIOS
options. Finally, to prevent accidental aliasing, we reserved
all memory regions affected by the interposer (i.e., those
with either A11 or A13 set).

Evaluation. We verified that the alias check was completed
successfully by querying the ALIAS_CHECK_COMPLETE
bit in the guest attestation report. While the switches remain
deactivated, the interposer passes through the CA signals
undisturbed at boot time, making it impossible to detect.

To test runtime aliases, we grounded both A11 and A13
on the interposer. We then manually scanned the memory
region, identifying aliasing regions and regions where the
system crashed. On our system, we successfully identified
aliases and found that A11 and A13 corresponded to bit 28
and 30 of the physical address, respectively, after subtracting
the PCI bus offset due to memory hoisting [41]. As a result,
the alias is found by XORing the offset physical address
with 0x50000000.

6.2. Attestation Attack

We experimentally demonstrate that interposer-based
aliases re-enable the attacks outlined in BadRAM. We re-
produce their attacks, including their full attestation breach.

Attack. During remote attestation, the SEV SP takes a
launch measurement of the VM and stores this digest in
the guest context. This launch digest is later used to verify
the VM’s integrity by comparing it with the owner-provided
ID block or dynamically validating it inside the guest VM.
While the guest context is encrypted, the same key is used
for all guests. Because the employed AES-XEX encryption
scheme is deterministic, this enables replay attacks on the
guest context.

BadRAM exploited this by first launching a genuine,
unmodified guest and capturing the launch digest from the
guest context through the alias [5]. Next, the attacker ter-
minates the genuine VM and prepares to launch a modified
VM. By ensuring the guest context is allocated at the same
physical address, the encryption tweak will be identical.
Next, the previously captured launch digest is replayed be-
fore finalizing the VM. Due to the static memory encryption,
this will result in a valid launch digest that matches the
genuine digest, even though the VM has been modified.

Evaluation. We successfully reproduced BadRAM’s end-
to-end attack on our fully patched AMD system, showing
that the mitigations introduced to stop SPD-based alias-
ing are ineffective against runtime aliases. As a result, a
physical adversary can bypass SEV’s integrity claims to
launch arbitrary VMs, breaking SEV’s attestation feature. In
practice, the end-to-end attestation attack requires booting
two VMs and completes within seconds, executing fully
deterministically without noise.

6.3. Discussion

Besides re-enabling ciphertext replay attacks, the aliases
introduced by the interposer also re-enable attacks architec-
turally mitigated in SEV-SNP. For instance, by changing
the ciphertext through the alias, attackers can launch fault
injection attacks on cryptographic implementations [42].
Similarly, aliases enable attackers to modify the critical
Reverse Map Table data structure, which was introduced
in SEV-SNP to ensure memory layout integrity [5]. By
maliciously altering these mappings, an attacker can decrypt
arbitrary memory pages [43, 44].

Ciphertext Hiding. The latest, 5th generation EPYC pro-
cessors introduce ciphertext hiding [8], which aims to isolate
guest and host memory. When enabled, the host cannot
access guest-encrypted memory regions and only observes
a fixed value. This mitigates ciphertext side channels, which
rely on observing the changes in ciphertext to deduce infor-
mation about the processed data [3, 4, 45, 46].

While the ABI specification does not provide imple-
mentation details, we hypothesize that the ciphertext hiding

12



TABLE 3. VULNERABILITY OF COMMERCIAL TEES TO MEMORY
ALIASING ATTACKS, INDICATING CIPHERTEXT READ (RD), WRITE (WR),

OR REPLAY (RPL) OR PLAINTEXT (PT) ACCESS ON PLATFORMS
WITHOUT THE LATEST MITIGATIONS (G#) OR UP TO DATE ( ).

TEE Crypto Rd. Wr. Rpl. Pt. Rd. Wr. Rpl. Pt.

Scalable SGX (§5) AES-XTS # # # #     
SEV-SNP† (§6) AES-XEX G# G# G# #    #
Client SGX (§7.1) AES-CTR  # # #  # # #
TDX (§7.2) AES-XTS # # # # # # # #

Arm CCA‡ (§7.3) AES-XEX/
QARMA – – – – – – – –

BadRAM [5] This work

†BadRAM mitigated in AMD firmware update. ‡No commercial hardware available.

feature is similar to SGX/TDX’s owner bit, splitting the
memory into host and guest partitions. Under this assump-
tion, aliasing attacks may circumvent this feature, similar
to our Scalable SGX attack (cf. Section 5.2). However,
as ciphertext hiding is available only on 5th generation
EPYC processors, which only support DDR5, we cannot ex-
perimentally verify its effectiveness under interposer-based
aliasing attacks.

7. Interposer Attacks on Other TEEs

Previous sections have investigated how our interposer
can undermine the security guarantees provided by Scalable
SGX and SEV-SNP. In this section, we investigate other
commercial TEEs, including Client SGX, TDX, and Arm
CCA. Table 3 provides an overview.

7.1. Client Intel SGX

Intel’s first-generation commercial TEE, Client SGX,
features a Memory Encryption Engine (MEE) that pro-
vides strong cryptographic protections for data stored in
external memory, including confidentiality, integrity, and
freshness [9]. To ensure confidentiality, SGX encrypts cache
lines using AES-CTR, with the counter incorporating spatial
and temporal components. This randomizes the ciphertexts
on each encryption and makes SGX immune to, for instance,
ciphertext side channels. To protect against replay attacks,
the counters are included in a Merkle tree, which is updated
on every write and verified on every read, ensuring the value
read was the latest value that was written. As counters are
updated on every write, replaying a value results in a counter
mismatch, which is detected. Additionally, the integrity of
each ciphertext is protected by a cryptographic MAC.

While SGX’s MEE provides robust cryptographic pro-
tections against attackers with arbitrary read and write ac-
cess, it does not conceal the memory access pattern. Prior
work has shown that observing the ciphertexts reveals the
memory write pattern, potentially leaking information in
non-constant-time applications [5]. Because the counters are
updated on every write, the ciphertext will change, even if
the plaintext remains constant. As a result, by observing

which ciphertexts change, the attacker can determine which
physical addresses the victim enclave wrote to.

Evaluation. We reproduce BadRAM’s attack on Client
SGX [5], using our interposer to introduce the aliases instead
of SPD-based aliasing. We equipped our Intel1 system with
an interposer on its single DIMM. Since Client SGX was
implemented on consumer processors, which use UDIMMs,
the attacker does not need to take into account parity;
grounding a single bit is sufficient. We confirm the ability to
observe the EPC through the aliases introduced by the inter-
poser and reproduce the basic BadRAM proof-of-concept,
which uses a dummy enclave to write to a random memory
location. We verified that the EPC changes corresponded to
the write pattern of the dummy enclave.

7.2. Intel TDX

Intel’s latest generation TEE, Trust Domain Extensions
(TDX), shifts the protection from individual enclaves to-
wards entire VMs, or Trust Domains (TDs). In contrast to
SGX, TDX allows these TDs to utilize the entire physical
address range. To protect memory contents against physical
attackers, TDX encrypts data stored to external memory us-
ing AES-XTS. However, in contrast to Scalable SGX, which
uses a single memory encryption key for the entire physical
address range, TDX supports TME-MK [24], providing each
TD with a dedicated encryption key.

However, all commercial TDX machines only support
DDR5, making them incompatible with our DDR4 inter-
poser. While this prevents direct experimental verification
of TDX’s countermeasures, we investigate the impact of a
DDR5 interposer on TDX below. We discuss DDR5-based
interposers in Section 8.1 but leave the exploration and
design of such interposers to future work.

Similar to SEV-SNP and Scalable SGX, TME-MK fea-
tures a deterministic encryption scheme that is, without
additional safeguards, vulnerable to attacks such as cipher-
text side channels and ciphertext replay through aliases. To
address this, TDX relies on the Alias Checking Trusted
Module (ACTM) to perform a boot-time alias check cover-
ing the entire physical address space. Additionally, similar
to Scalable SGX, TDX provides logical integrity by repur-
posing one ECC bit to store an owner bit. Furthermore,
TDX adds cryptographic integrity via a 28-bit MAC in ECC
bits [19, 47].

While the logical integrity could be bypassed by aliasing
between two different TDs, as demonstrated in Section 5,
the cryptographic integrity remains robust against simple
aliasing attacks. This is because, while an interposer enables
replay of the data bits containing the ciphertext, it cannot be
used to replay the ECC bits, which store the cryptographic
MAC. Replaying both data and ECC bits, while theoretically
possible, would require a full-fledged interposer capable
of intercepting and replaying the data contents. Such an
interposer poses significantly higher engineering challenges.
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7.3. Arm CCA

Confidential Compute Architecture (CCA) is Arm’s lat-
est TEE, enabling confidential VMs, called Realms, in the
cloud. CCA is realized through the Realm Management
Extension (RME), which introduces Realms and partitions
the system into four physical address spaces: Non-secure,
Secure, Realm, and Root [48]. The RME enforces memory
isolation using the Granule Protection Table (GPT), which
tracks ownership and state of memory blocks called gran-
ules [49]. Upon every memory access, a Granule Protection
Check (GPC) verifies the access rights based on the GPT.

CCA ensures the confidentiality of DRAM contents
through memory encryption with address-based tweak, im-
plementing either QARMA or AES-XEX [22]. Additionally,
vendors may choose to provide additional security features
(e.g., by providing additional integrity and/or freshness).
Critical data structures, such as the GPT, are either stored
in on-chip memory or protected through additional integrity
mechanisms when stored in external memory to limit ex-
posure. Direct ciphertext access is blocked through GPC
checks, preventing ciphertext side channels.

Similar to Scalable SGX and SEV, CCA’s determin-
istic encryption scheme may make it vulnerable to inter-
poser attacks, potentially enabling ciphertext read and replay
attacks through aliases. Additionally, in systems without
Memory Encryption Context (MEC), all Realms share a
single encryption context, possibly enabling plaintext access
similar to Scalable SGX (cf. Section 5.3). However, no
CCA-capable hardware is currently available, and emulation
platforms [50] do not include memory encryption, making it
impossible to assert the provided security guarantees against
physical memory interposers.

8. Discussion and Mitigations

8.1. Interposer Attacks on DDR5

DDR5 introduces several architectural changes com-
pared to DDR4, including the introduction of subchannels.
To support this, the width of the CA bus has been reduced
from 26 bits for DDR4 to 14 bits for DDR5, with commands
now multiplexed over two consecutive cycles. Figure 9a
shows a subset of the command encoding.

This multiplexing complicates manipulation, as each
switch will now affect two logical bits. RDIMMs further
complicate the matter, featuring an RCD that halves the CA
width to only 7 bits. Each command is transmitted to the
RCD in 7-bit chunks on a double data rate bus, as shown in
Figure 9b, along with a parity signal that ensures command
integrity. The RCD combines these to produce the full 14-bit
CA encoding that is sent to the DRAM chips.

Pulling a single CA line will thus affect four logical
command bits. However, each 7-bit chunk is accompanied
by a parity bit, causing the RCD to detect the manipulation.
If RCD parity cannot be disabled, as we observed on our
DDR4 Intel server, the attacker would need to manipulate
two lines simultaneously.

CA
CS 0 1 2 3 4 5 6 7 8 9 10 11 12 13

L L L Row 0–3 BA0–1 BG0–2 CID
H Row 4–16 R17

ACT

L H L H H H BL BA0–1 BG0–2 CID
H V Column 3–10 V AP V V CID

RD

L H L H L H BL BA0–1 BG0–2 CID
H V Column 3–10 V AP WP V CID

WR

(a) UDIMM.

CA
CK CS 0 1 2 3 4 5 6

L L L L Row 0–3 BA0
H L BA1 BG0–2 CID
L H Row 4–10
H H Row 11–16 R17

ACT

L L H L H H H BL BA0
H L BA1 BG0–2 CID
L H V Column 3–8
H H C9–10 V AP V V CID

RD

L L H L H L H BL BA0
H L BA1 BG0–2 CID
L H V Column 3–8
H H C9–10 V AP WP V CID

WR

(b) RDIMM.

Figure 9. Activate, read, and write command encoding for DDR5 UDIMM
and RDIMM [51]. CA values can be either high (H), low (L), valid (V),
or don’t care (X). BA and BG refer to bank group and bank address,
respectively. CID is only defined for 3DS devices, otherwise valid.

As a result, introducing aliases on DDR5 RDIMMs
using the primitive from Section 3 is impossible without af-
fecting other critical command bits. While not introduced as
a security feature, these changes significantly complicate the
ability to meddle with the bits using rudimentary switches.
Introducing aliases on these systems using an interposer
would either require the attacker to bypass the RCD parity
checking or manipulate the command lines at DDR5 speeds.
While this leaves TDX out of scope for this work, DDR4
RDIMMs, compatible with Scalable SGX and SEV-SNP,
remain widely deployed in cloud environments.

8.2. Mitigations

The interposer introduces aliases after the addresses have
been sent out by the memory controller. Furthermore, their
dynamic nature makes detecting them from software or
firmware impossible. As a result, robust countermeasures
thus require hardware changes.

Memory Layout. Successful exploitation of the interposer-
based attacks requires positioning the victim’s pages to alias
with the attacker’s. This requires precise control over the
memory allocation on the target system. Reducing the ability
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of an adversary to perform this precise memory allocation
would make exploitation of the attack considerably more
challenging.

Compact CA Encoding. A compact encoding (such as
in DDR5 RDIMMs) with commands spread over multiple
clock cycles makes it more difficult to introduce aliases
successfully using a passive interposer. Instead of affecting
a single bit, these multiplexed schemes result in multiple
faults, increasing the probability of corrupting other com-
mands. Additionally, the presence of a parity signal, such as
on RDIMMs, significantly increases complexity as faulting
a single line will be detected. While these are not princi-
pled countermeasures and are mostly introduced to improve
performance and reliability, they significantly increase the
complexity of these attacks.

Integrated Memory. Integrated memory, such as high-
bandwidth memory, is typically integrated into the package
using 2.5D or 3D stacking. As a result, the command and
data bus are internal to the package and thus inaccessi-
ble to a physical adversary. This effectively eliminates our
interposer-based attacks. However, such integrated memory
is less flexible, more expensive, and limited in capacity,
making it unsuitable for systems requiring large or upgrad-
able memory.

Strong Crypto. The attacks in this paper are enabled by the
migration of TEEs to deterministic encryption schemes that
omit integrity and freshness in return for larger protected
memory sizes. Strong cryptographic memory encryption
schemes, such as Intel’s MEE in Client SGX [9], mitigate
any physical tampering with the memory bus, including
ciphertext replay attacks, though side-channel attacks are
still possible [5]. These protections, however, come at a
significant cost: performance overhead due to integrity and
freshness checks, storage overhead to store the MACs, and
limited protected memory sizes due to integrity tree scaling
limitations. While recent academic works have improved
upon this design [52, 53, 54, 55], they have yet to be adopted
by commercial TEEs.

More recently, Intel’s TDX re-introduces cryptographic
integrity by embedding a 28-bit MAC in the ECC bits.
While this does not offer freshness, it does mitigate alias-
based replay attacks since those cannot replay ECC bits. It
thus offers partial replay protection while maintaining low
overhead and a large encrypted memory size.

9. Conclusion

Scalable TEEs employ deterministic memory encryption
to protect data in DRAM. To prevent breaches through
memory aliasing, they feature additional safeguards, such
as boot-time alias checks. In this paper, we introduced a
DDR4 memory interposer that enables dynamic aliasing,
bypassing these mitigations. We demonstrated how our in-
terposer enables arbitrary plaintext access to Scalable SGX
enclaves, by exploiting TME’s single key domain. We used

this capability to extract the hardware attestation key, break-
ing the SGX attestation chain. Furthermore, we showed
how the interposer bypasses recently introduced mitigations
on SEV-SNP, re-enabling previously mitigated attacks. Our
$50 attack shows that low-cost physical adversaries form a
practical, yet underestimated, threat. While DDR5 increases
CA complexity, preventing our primitive at present, it does
not eliminate the underlying issue. We argue that memory
encryption and TEE designs should consider the impact of
these threats and provide strong, robust mitigations against
low-cost physical adversaries.
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